Diễn đàn Tháng 10 Online


 
Trang ChínhCalendarGalleryTrợ giúpTìm kiếmThành viênNhómĐăng kýĐăng Nhập

Share | 
 

 đề thi toán khối D năm 2011

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
Tác giảThông điệp
mylove_endlessloves
Quản trị viên
Quản trị viên
avatar

Gia nhập : 05/12/2011
Đến từ : lập thành city
Tuổi : 21
Bài gửi : 1114
Danh vọng : 3638
Số lần được cảm ơn : 11

Bài gửiTiêu đề: đề thi toán khối D năm 2011   Thu 15 Dec 2011 - 14:26

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn : TOÁN ; Khối: D

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
2. Tìm k để đường thẳng y = kx + 2k +1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng cách từ A và B đến trục hoành bằng nhau.
Câu II (2,0 điểm)
1. Giải phương trình
2. Giải phương trình
Câu III (1,0 điểm) Tính tích phân
Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = và = 300 . Tính thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm
PHẦN RIÊNG (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(-4; 1), trọng tâm G(1; 1) và đường thẳng chứa phân giác trong của góc A có phương trình x - y - 1 = 0. Tìm tọa độ các đỉnh A và C.
2. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng . Viết phương trình đường thẳng D đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Câu VII.a (1,0 điểm) Tìm số phức z, biết :
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng tỏa độ Oxy, cho điểm A(1; 0) và đường tròn (C) : x2 + y2 - 2x + 4y - 5 = 0. Viết phương trình đường thẳng D cắt (C) tại điểm M và N sao cho tam giác AMN vuông cân tại A.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng D : và mặt phẳng
(P) : 2x - y + 2z = 0. Viết phương trình mặt cầu có tâm thuộc đường thẳng D, bán kính bằng 1 và tiếp xúc với mặt phẳng (P).
Câu VII.b (1,0 điểm) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [0;2].
----- Hết -----





BÀI GIẢI GỢI Ý

Câu I :
1. Khảo sát và vẽ đồ thị (C)
D = R \ {-1}
y/ = > 0 với mọi x Î D
và Þ x = -1 là TCĐ
Þ y = 2 là TCN
BBT :
x - ¥ - 1 +¥
y/ + +
y +¥ 2
2 -¥
Hàm số đồng biến trên từng khoảng xác định, không có cực trị.

Đồ thị hàm số :












2. Pt hoành độ giao điểm :

Û kx2 + (3k - 1)x + 2k = 0 (x = -1 không là nghiệm)
Ycbt : Û k ¹ 0 và D = k2 - 6k + 1 > 0 Û k < và k ¹ 0 (*)
Khoảng cách từ A và B đến Ox bằng nhau
Û êyAê=êyBê Û Û
Û k = – 3 (thỏa đk (*) ). Vậy YCBT Û k = – 3
Câu II :
1) đk : tg ; cosx ¹ 0
Pt Û sin2x + 2cosx - sinx - 1 = 0 Û 2sinxcosx + 2cosx - (sinx + 1) = 0
Û 2cosx (sinx + 1) - (sinx + 1)= 0 Û (2cosx - 1)(sinx + 1) = 0
so đk ta có nghiệm của pt :
2) (x Î [-1;1])
Û 8 - x2 = (*)
Đặt t =
(*) thành (t -2)2 (t2 + 4t + Cool = 0
Û t = 2 Û = 2 Û x = 0 (nhận)
Câu III :
I =
Đặt t = => (t - 2)dt = dx
=> I =
Câu IV :
Gọi H là hình chiếu của S xuống BC.
Vì (SBC) ^ (ABC) nên SH ^ (ABC)
Ta có SH =
Thể tích khối (SABC) =
Ta có : Tam giác SAC vuông tại S
vì SA = ; SC = 2a; AC = 5a.
Diện tích D(SAC) =
d(B,(SAC)) = =
Câu V :
Hệ Đặt
Hệ thành :
Đặt f(u) = ; f/(u) = ;f/(u)=0 (loại) hay
u + ¥
f/(u) + 0 -
f(u)
– ¥
Vậy hệ có nghiệm có nghiệm thuộc
Câu VIa :
1. Gọi M là trung điểm của AC, ta có
Gọi N là điểm đối xứng của B qua phân giác trong D của góc A và H là giao điểm của D với đường thẳng BN.

Đường thẳng BN có phương trình : x + y + 3 = 0
=> Tọa độ H là nghiệm của hệ phương trình :
H là trung điểm của BN
Đường thẳng AC qua 2 điểm M, N nên có pt : 4x – y – 13 = 0
A là giao điểm của đường thẳng D và đường thẳng AC nên tọa độ A là nghiệm
của hệ :
M là trung điểm của AC Û Þ
2. Gọi M là giao điểm của đường thẳng D với Ox Þ M (m; 0; 0) Þ = (m – 1; -2; -3)
AM ^ d Û . = 0 Û m = -1 Þ = (-2; -2; -3)
Vậy pt D là
Câu VII.a :
Gọi z = a + bi (a, b Î R). Khi đó z - (2 + 3i) = 1 – 9i Û a + bi – (2 + 3i)(a –bi) = 1 – 9i
Û –(a + 3b) + (3b –3a)i = 1 –9i Û
Vậy z = 2 –i

Câu VI.b :
1. Đường tròn (C) có tâm I (1; -2), R =
. Vì I và A cách đều M, N nên MN ^ AI, vậy pt MN có dạng : y = b
MN = 2


Vậy Pt : D1 : y = 1 ; D2 : y = - 3
2. Phương trình tham số đường thẳng D
I Î (D) Û I (1 + 2t; 3 + 4t; t)
d (I, P) = = 1 Û t = 2 hay t = -1
Þ I1 (5; 11; 2) Þ Pt mặt cầu (S) : (x – 5)2 + (y – 11)2 + (z – 2)2 = 1
Þ I2 (-1; -1; -1) Þ Pt mặt cầu (S) : (x + 1)2 + (y + 1)2 + (z + 1)2 = 1
Câu VII.b :
Ta có : y/ =
y/ = 0 Û x = 0 v x = – 2 (loại)
mà y(0) = 3 và y(2) =
Vậy GTLN là và GTNN là 3
Trần Văn Toàn
(Trường THPT Vĩnh Viễn – TP.HCM)
Về Đầu Trang Go down
Xem lý lịch thành viên http://thang10online.4rumer.net
 
đề thi toán khối D năm 2011
Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang
 Similar topics
-
» Insidious - Ma Quái [DVDrip] [VietSub] [2011] - Đáng xem!!!!

Permissions in this forum:Bạn không có quyền trả lời bài viết
Diễn đàn Tháng 10 Online :: KHOA HỌC - GIÁO DỤC :: Khoa học tự nhiên-
Chuyển đến